On the Reaction Mechanism of Br_{2} with OCS

Hai Tao YU^{1}, Hua ZHONG ${ }^{1}$, Ming Xia $\mathrm{LI}^{1,2}$, Hong Gang $\mathrm{FU}^{1,2}$ *, Jia Zhong SUN ${ }^{1,2}$
${ }^{1}$ School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080
${ }^{2}$ State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023

Abstract

The reaction mechanism of photochemical reaction between $\operatorname{Br}_{2}\left({ }^{1} \Sigma\right)$ and OCS $\left({ }^{1} \Sigma\right)$ is predicted by means of theoretical methods. The calculated results indicate that the direct addition of Br_{2} to the CS bond of OCS molecule is more favorable in energy than the direct addition of Br_{2} to the CO bond. Furthermore, the intermediate isomer syn $-\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$ is more stable thermodynamically and kinetically than anti- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$. The original resultant anti- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$ formed in the most favorable reaction channel can easily isomerize into the final product syn- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$ with only $31.72 \mathrm{~kJ} / \mathrm{mol}$ reaction barrier height. The suggested mechanism is in good agreement with previous experimental study.

Keywords: Reaction mechanism, reaction of Br_{2} with OCS, $\operatorname{CCSD}(\mathrm{T})$ method.

In the experiment performed by Romano and coworkers ${ }^{1}$, they explored the photochemically induced reaction between Br_{2} and OCS in an Ar matrix at 15 K followed by the assignment for the FTIR spectrum of the matrix, and the existence of a novel (bromocarbonyl) sulfenyl bromide, syn- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$, is confirmed. Furthermore, two computational models, MP2 and B3LYP with 6-31+G(d) basis set, predict the syn conformer to be more stable than the anti one, in agreement with all the available experimental and theoretical evidences ${ }^{2-4}$. Because the reactants in Romano's experiments are Br_{2} and OCS, an anti product is expected, which is not in agreement with the final experimental observation. And then, a structure arrangement or conformer conversion is suggested to exist in the photochemical reaction. In this work, we will explore the reaction mechanism of Br_{2} with OCS for predicting the intermediates, products, and their reaction channels and understanding the available experimental results by means of theoretical methods.

All calculations are performed using Gaussian 98 program running on the SGI/Origin300 server. The geometries of reactants, intermediate isomers, products, and transition states are optimized at the B3LYP/6-311G(d) level of theory, and the CCSD(T) energies including zero-point energy correction obtained from B3LYP geometries with 6-311G(2df) basis set are used in all discussion of this letter.

Four intermediate isomers, anti- and syn- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$, anti- and syn- $\mathrm{BrC}(\mathrm{S}) \mathrm{OBr}$, and

[^0]six reaction transition states are obtained in the optimizations. Their geometries are indicated in Figure 1, while the reaction channels are plotted in Figure 2.

From Figure 2, we can note that the intermediate isomers 3 and 4 are two high-lying species relative to intermediates $\mathbf{1}$ and $\mathbf{2}$. The isomerization barriers from $\mathbf{4}$ to 3, and $\mathbf{3}$ to $\mathbf{1}$ via transition states TS3/4 and TS1/3, are only $28.50 \mathrm{~kJ} / \mathrm{mol}$ and 44.16 $\mathrm{kJ} / \mathrm{mol}$, respectively, which indicate that they have lower kinetic stability. Furthermore, considering very high direct dissociation energy $497.83 \mathrm{~kJ} / \mathrm{mol}$ from 3 to dissociation fragments SC $\left({ }^{1} \Sigma\right)$ and $\operatorname{OBr}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)$, we can consider that the intermediate isomers 3 and 4 are kinetically unstable, viz., they are very difficult to be observed experimentally. But low-lying isomers $\mathbf{1}$ and $\mathbf{2}$ can be predicted to be kinetically more stable than $\mathbf{3}$ and $\mathbf{4}$ considering that they lie in a deeper potential well because of higher dissociation barrier ($164.37 \mathrm{~kJ} / \mathrm{mol}$) and isomerization energies ($231.32 \mathrm{~kJ} / \mathrm{mol}$ for $\mathbf{1} \boldsymbol{\mathbf { 3 }}$ and $197.18 \mathrm{~kJ} / \mathrm{mol}$ for $\left.2 \rightarrow \operatorname{Br}_{2}\left({ }^{1} \Sigma\right)+\mathrm{OCS}\left({ }^{1} \Sigma\right)\right)$.

Figure 1 Predicted geometries of intermediate isomers, fragments, and transition states Bond lengths are in nanometers, and bond angles in degrees

TS1/CO

TS1/3
$\mathrm{C} \stackrel{0.11270}{ } \mathrm{O}$
$C \xrightarrow{0.15409} \mathrm{~S}$

In conformers $\mathbf{1}$ and 2, C-O bond lengths are very close to the normal C-O double bond distance (0.11999 nm in $\mathrm{H}_{2} \mathrm{CO}$ at the B3LYP/6-311G(d) level), and then, they can be regarded as normal double bond. The C-S bond lengths are slightly shorter than the normal C-S single bond length (0.18354 nm in $\mathrm{CH}_{3} \mathrm{SH}$ at the B3LYP/6-311G(d) level), and are obviously longer than the C-S double bond distance (0.16152 nm in $\mathrm{H}_{2} \mathrm{CS}$ at the B3LYP/6-311G(d) level). Therefore, we can consider that the C-S bonds in $\mathbf{1}$ and $\mathbf{2}$ are single bond with some double bond characters.

For the reaction between Br_{2} and OCS, two reaction channels are suggested from Figure 2. The first is the direct addition of Br_{2} to the $\mathrm{C}-\mathrm{O}$ bond of OCS molecule, followed by the isomerization pathway $\mathbf{4} \rightarrow \mathrm{TS} 3 / 4 \rightarrow \mathbf{3} \rightarrow \mathrm{TS} 1 / 3 \rightarrow \mathbf{1}$, with a reaction barrier height of $320.89 \mathrm{~kJ} / \mathrm{mol}$. The other is a direction addition process of Br_{2} to the C-S bond of OCS molecule, followed by the interconversion reaction $\mathbf{2} \rightarrow \mathrm{TS} 1 / 2 \rightarrow \mathbf{1}$, and the initial reaction barrier is $248.32 \mathrm{~kJ} / \mathrm{mol}$. Obviously, the former reaction channel is very favorable to compete with the latter by comparing their reaction barrier height. Therefore, the direct addition reaction of Br_{2} to the CS bond of OCS molecule should be the most possible initial reaction step in Romano's experiment ${ }^{1}$.

The calculated results show that syn- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr} \mathbf{1}$ is lower in energy than anti$\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$ by $17.37 \mathrm{~kJ} / \mathrm{mol}$, i.e., syn conformer is more stable thermodynamically than anti one. Based on the suggested reaction pathways above, we can easily know that

Figure 2 Schematic reaction channels

anti species is firstly formed in the reaction of Br_{2} with OCS via transition state $\mathrm{TS} 2 / \mathrm{Br}_{2}$. And the anti conformer can isomerize into syn isomer via transition state TS1/2 with a $31.72 \mathrm{~kJ} / \mathrm{mol}$ reaction barrier height. Note that the $49.09 \mathrm{~kJ} / \mathrm{mol}$ reverse barrier and dissociation barrier of $164.37 \mathrm{~kJ} / \mathrm{mol}$ from 1 to fragments $\operatorname{SBr}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)$ and $\mathrm{CO}\left({ }^{1} \Sigma\right)$, we can say that the syn isomer is more stable kinetically than anti one, and the main product in Romano's experiment ${ }^{1}$ is syn $-\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$, but not anti- $\mathrm{BrC}(\mathrm{O}) \mathrm{SBr}$. The theoretical prediction is in good agreement with the experimental observation ${ }^{1}$.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 20301006, 20271019), the Doctoral Foundation of Heilongjiang University (2002).

References

1. R. M. Romano, C. O. Della. Védova, A. J. Downs, Chem. Commun., 2001, 2638.
2. R. M. Romano, C. O. Della. Védova, A. J. Downs, T. M. Greene, J. Am. Chem. Soc., 2001, 123, 5794.
3. H. G. Mack, H. Oberhammer, C. O. Della. Védova, J. Phys. Chem., 1991, 95, 4238.
4. C. O. Della. Védova, H. G. Mack, Inorg. Chem., 1993, 32, 9.

Received 23 March, 2004

Correction

J. G. YANG, X. Y. YU, H. H. WU, Z. L. CHENG, Y. M. LIU, M. Y. HE, "The Synthesis of 2, 4, 6-Triisopropyl-1, 3, 5-trioxane Catalyzed by Ionic Liquids", Vol. 16 No. 3, pp299-302. On page 300, 18th line " $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{3}$ " should be " $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3}$ ".

[^0]: * E-mail: fuhg@vip.sina.com

